27-29 May 2024 🗮

International conference on Marine Data and Information Systems

Interpolation of Continuous Plankton Recorder data using a neural network technique

IMDIS 2024

Charles Troupin // Alexander Barth // Pierre Hélaouët

28 May 2024

our goal
"Interpolation of Continuous Plankton
Recorder data using a neural network
technique"
the tool
(DINCAE)

"Before you could apply all your artificial intelligence algorithms, I had to put real intelligence to prepare the data."

How it all began...

One month of observations...

Continuous Plankton Recorder [CPR] survey

The Continuous Plankton Recorder (CPR) Survey

On this day in 1896, Sir Alister Hardy, the founder of the *#CPRSurvey*, was born. During his early career, Hardy designed and built the first Continuous Plankton Recorder, and after only a couple of modifications, remains the same design we use today! Happy Birthday! #OnThisDay

1931 Start of the monitoring 7284725 Total Nautical Miles Towed 659 Taxa Routinely Analysed 282552 Total Samples Analysed https://www.cprsurvey.org

Continuous Plankton Recorder dataset

- 250021 observations
- 1958 2020 period
- position | time | abundance of different taxa

Continuous Plankton Recorder dataset

- 250021 observations
- 1958 2020 period
- position | time | abundance of different taxa
- strong spatial heterogeneity

Continuous Plankton Recorder dataset

- 250021 observations
- 1958 2020 period
- position | time | abundance of different taxa
- strong spatial heterogeneity
- variable temporal availability

Canalus finmarchicus and Calanus helgolandicus

https://www.marinespecies.org/aphia.php?p=taxdetails&id=104464

https://www.marinespecies.org/aphia.php?p=taxdetails&id=104466

- Most studied copepods
- Prey for higher trophic levels
- Different spatial preferences
- Influence of temperature and depth on their distribution

Canalus finmarchicus and Calanus helgolandicus

- Most studied copepods
- Prey for higher trophic levels
- Different spatial preferences
- Influence of temperature and depth on their distribution

The tool: DINCAE

Data Interpolating

Convolutional — works on subset of data, trains on local features

Auto Encoder } – compress/decompress based on its essential features

https://github.com/gher-uliege/DINCAE.jl
 10.5281/zenodo.5575066

Want to know more about DINCAE?

Barth *et al.* (2020) Python version - not maintained

Barth *et al.* (2022) **Julia version**

DINCAE is written in Julia and use GPU computing

2018	Harder, Better, Faster, Stronger
2024	Faster, more mature

https://juliagpu.org

At first it didn't look that nice

Issues:

- A lot of negative values (grey pixels)
- 2 Anomalous values near the boundaries
- 3 Stripes
- 4 Extreme values

At first it didn't look that nice

Guys what are you Pierre doing ?!?

Solutions:

- 1 Apply $\log_{10}(x+1)$ transformation on observations
- 2 Enlarge domain for computation
- 8 Perform multivariate analysis
- 4 Add smoothness constraint in the cost function
- 5 Tune the hyperparameters

Using environmental variables

Sea surface temperature (Hadley)

Using environmental variables

Bathymetry (GEBCO, EMODnet)

Using environmental variables

Chlorophyll concentration (CMEMS)

Smoothness constraint in the cost function

Cost function:

$$J_{\rm obs}(\hat{\mathbf{y}}, \hat{\sigma}^2) = \frac{1}{2N} \sum_{ij} \left[\left(\frac{\mathbf{y}_{ij} - \hat{\mathbf{y}}_{ij}}{\hat{\sigma}_{ij}} \right)^2 + \log(\hat{\sigma}_{ij}^2)) \right]$$

New terms:

$$J_{\text{tot}}(\hat{y}, \hat{\sigma}^2) = J_{\text{obs}}(\hat{y}, \hat{\sigma}^2) + \boxed{\alpha_y \nabla_d^2 \hat{y} + \alpha_{\sigma^2} \nabla_d^2 \hat{\sigma}^2}$$

coefficients to control smoothness constraint

$$\alpha_{y} = 10^{-6}$$

$$\alpha_{y} = 10^{-5}$$

$$\alpha_{y} = 10^{-4}$$

$$\alpha_{y} = 10^{-3}$$

$$\alpha_{y} = 10^{-2}$$

$$\alpha_{\rm V} = 10^{-1}$$

$$\alpha_y = 1$$

Field for a given month

Field for a given month

Comparison with the observations Left = binned observations

Comparison with the observations Left = binned observations

Right = gridded fields

Time series

Spatial average of the C. finmarchicus abundance for each month. Green = observations Black = gridded field

Let's have a look at another species

Calanus helgolandicus, July mean

Cross-validation:

- Remove 10% of the observations
- 2 Perform reconstruction
- 3 Compare the removed observations with the reconstruction at the same locations
- 4 Repeat with another set of parameters
- 5 Minimise the RMS error with the validation dataset

Tuning hyperparameters

Yes, but...

number of parameters $\simeq 18$ number of tested values per parameter $\simeq 5$ time to run one reconstruction $\simeq 2$ hours

```
18^5 \times 2 = 3779136 hours
```

number of parameters $\simeq 18$ number of tested values per parameter $\simeq 5$ time to run one reconstruction $\simeq 2$ hours

$18^5 \times 2 = 3779136$ hours = 157464 days

- Focus on a few, relevant parameters: number of epochs, learning rate, Laplacian penalty
- 2 Test random sets of values in pre-determined ranges
- 3 Fix the other parameters

How it (almost) ends...

 With a neural network technique, we could create realistic monthly gridded fields

- With a neural network technique, we could create realistic monthly gridded fields
- It was (obviously) necessary
 to tune the hyperparameters for the application

- With a neural network technique, we could create realistic monthly gridded fields
- It was (obviously) necessary
 to tune the hyperparameters for the application
- 3 Adding environmental variables contribued to improve the results

Let's get FAIR

Findable

Accessible

Interoperable

Reusable

Let's get FAIR

Findable

Accessible

Interoperable

Reusable Reproducible

Provide access to:

- 1 The same input dataset
- 2 The software code (same version/release)
- 3 The scripts or notebooks created to use the code on the data
- 4 The intermediate assets: bathymetry, sea surface temperature, ...

- 1 Optimisation of more parameters
- 2 Increased spatial resolution: $1^{\circ} \times 1^{\circ} \rightarrow 0.5^{\circ} \times 0.5^{\circ}$
- 3 Testing of other environmental variables?
- $99~\infty$ finish writing the paper and submit it

"Before you could apply all your **artificial intelligence** algorithms, I had to put **real intelligence** to prepare the data." "Before you could apply all your **artificial intelligence** algorithms, I had to put **real intelligence** to prepare the data." [Peter Herman]

Credits

DINCAE code	Alexander Barth
Data extraction	Pierre Hélaouët
Data preparation	Charles Troupin
Experiment design	Charles, Alex, Pierre

Bathymetry GEBCO, EMODnet Sea surface temperature Hadley SST Chlorophyll concentration Copernicus Marine Service

Computing resources Lucia, Abacus

27-29 May 2024 🗮

International conference on Marine Data and Information Systems

