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Introduction

Importance of Marine Ecosystems:

* Marine ecosystems are biodiversity-rich and vital for ecological
balance. They provide essential services such as oxygen
production, carbon sequestration, and support for marine life.

* These ecosystems are under significant threat from human
impacts, including overfishing, pollution, and climate change,
which disrupt their delicate balance.



Introduction

Role of Al and 3D Modeling:

*Artificial Intelligence (Al) helps understand complex marine #2555 &
biodiversity and ecosystems by analyzing large datasets and *C i
uncovering previously unknown patterns, enabling more | '
effective conservation.

* Al is also used to deal with the vast number of unknown Complex Habitat
marine species, aiding in their classification and detection. in2D RS

*3D modeling provides precise mapping of underwater
structures, correcting limitations of 2D models. It offers a
more accurate view of marine habitats, revealing detailed
insights into habitat complexity and connectivity.



1. Evaluate the Current State of Marine Biodiversity:
Utilize Al and 3D modeling to analyze marine species distribution.

2. Advance Seascape Characterization Methods:
Integrate Al-driven data analysis and 3D spatial modeling.

3. Develop Predictive Models for Conservation Efforts:

Use machine learning algorithms to predict changes in biodiversity and
seascapes.

4. Optimize Monitoring and Management of Marine Ecosystemes:
Improve efficiency and precision of monitoring programs.



Methodology —

Advancing Coastal Habitat Assessment: A Multiscale LIDAR-MBES Approach Supported by Machine Learning
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Methodology - Data Acquisition — Research area
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Methodology - Data Acquisition
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Methodology - Data Acquisition - 3D models from photogrammetry

1. Photogrammetry is essential for validating LiDAR data in specific areas where data is missing
2. This process ensures the accuracy and completeness of our marine habitat maps.
3. We perform photogrammetry using scuba diving expeditions to capture high-resolution

images.
4. These images are processed with photogrammetry software to create detailed 3D models o

the underwater environment.




Methodology - Bathymetry enhancement

SRGAN

What is SRGAN?

A super-resolution Generative Adversarial Network (SRGAN) is a type of machine learning
model used to enhance image resolution.

- It works by training a neural network to generate high-resolution images from low-
resolution inputs, using a combination of adversarial training and perceptual loss.

Purpose of Bathymetry Enhancement

- Bathymetry maps created from multibeam echosounder (MBES) data cover vast areas but
often lack the desired resolution for detailed analysis.

- LiDAR data offers higher resolution but is limited in coverage due to the extensive time
required for surveys.

- Enhancing MBES data using SRGAN allows us to achieve high-resolution maps over large
areas quickly, meeting our needs for detailed marine habitat studies.



Methodology Bathymetry enhancement

Tra|n|ng Dataset




Methodology - Data Acquisition — Fish Dataset

*Purpose of 360-Degree Cameras:

* We use fixed 360-degree cameras to record underwater videos
during various seasons to monitor marine biodiversity and
habitat changes.

* These cameras provide comprehensive and continuous data
collection, covering a wide field of view.

*Advantages Over Traditional Methods:

* Traditional BioBlitz surveys rely on divers to manually observe
and record marine life, which is time-consuming and prone to
human error.

* Using 360-degree cameras allows for more accurate, efficient,
and less intrusive monitoring of marine ecosystems.




Methodology - Data Acquisition — Fish Dataset
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Methodology - Data Acquisition — Fish Dataset
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Methodology - Data Acquisition — Fish Dataset
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Methodology - prepressing— Fish Detection

YOLOv7 and Dataset:

- YOLOvV7 is used for detection and classification of
marine species in underwater videos.

- The dataset consists of annotated images from the
360-degree camera recordings.

- The YOLOvV7 model is trained on this annotated
dataset to accurately detect and classify species from
the videos.

Objects annotation




Methodology — ML training model— Fish Detection

Training model performance

Dataset Split
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Methodology Fish Detection - results

Input Output



Methodology - Fish Detection - results




Methodology - Multi-Scale habitats- geomorphometric features
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Methodology - Multi-Scale habitats- geomorphometric features

Profile curvature

Compute geomorphometric features
on DSM bathymetric data.



Methodology - Integrating Connectivity in Seascape Ecology

Bridging Structural and Functional Connectivity

Functional Connectivity



Methodology - Integrating Connectivity in Seascape Ecology
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Results

Such results are expected
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SRGAN-Enhanced MBES Data:
e Decrease in RMSE to 14.22 from a baseline of 20.4.

* Future steps to achieve LiDAR-level detail in seafloor
reconstructions.

* Deep Learning Model for Fish Detection:
e - Current recognition of 80% of fish from five species.
- Aimtoincrease accuracy to 90% with more varied data.

Habitat Suitability Mapping:
- Generating spatial maps with habitat suitability scores



Conclusion

Enhanced Seafloor Mapping: SRGAN improves LiDAR and MBES resolution.

Biodiversity Assessment: Al and 3D modeling analyze species distributions.

Seascape Characterization: Multi-scale data enhances habitat insights.

Monitoring Techniques: 360-degree cameras and YOLOV9 for efficient monitoring.

Al in Conservation: Predict changes in biodiversity.

Data Validation: Photogrammetry ensures accurate habitat maps.

Future Directions: Refine Al models for broader use.

Seascape Mapping: Integrate geomorphometric and biological data.

Collaboration: Share data to advance marine conservation.
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