Enhancing ARGO Floats Data Re-usability

Gianpaolo Coro, Paolo Scarponi, Pasquale Pagano

Istituto di Scienza e Tecnologie dell'Informazione A. Faedo - CNR, Pisa, Italy

This work has received funding from the European Union's Horizon 2020 research and innovation programme under the ENVRI PLUS project (grant agreement No 654182).

INFRASTRUCTURE

Context

ENVRI

Argo data (www.argo.ucsd.edu) record environmental parameters (e.g. Ph, salinity, pressure, chlorophyll) since Jan. 1999, through a large network of floats. Data are assembled by Global Data Assembly Centers. They are largely used in environmental monitoring systems.

Issues:

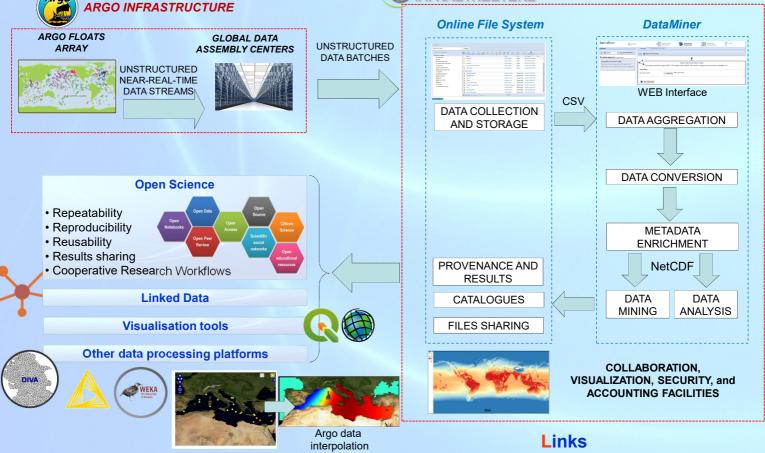
- Argo data are in NetCDF-Point and CSV formats; detailed metadata are described externally to the files;
- Parsing and usage is hardware demanding and requires specific coding;
- Not directly usable in common processing and visualization tools;
- Repositories not always easily accessible;
- Poor compliance with Open Science requirements of re-usability, repeatability, reproducibility.

Solution

- We implemented an Open Science oriented workflow to convert (5584) Argo datasets into standardized NetCDF-CF Grid files. We used the DataMiner cloud computing system of the D4Science e-Infrastructure (www.d4science.org): Workflow:
- 1.Retrieve monthly-observation datasets from Argo;
- 2.Represent metadata (i.e. variable names and descriptions, units of measure, etc.), in compliance with the Climate and Forecast (CF) standard vocabulary;
- 3. Uniform Z dimension by porting all depths to meters;
- 4.Generate 3D grids with 10 logarithmic-divided depth intervals and 0.5° longitude-latitude resolution;
- 5.Clamp observation values to this 3D grid and associate average-aggregated values to each cell;

6.Create NetCDF-CF files for every monthly ARGO dataset and variable.

Advantages:


- Argo files are processed by 20 machines in DataMiner (Ubuntu, 32GB RAM, 16 vCores);
- •The transformation process is reusable published under the OGC Web Processing Service standard;

•Provenance (link to the original input, processing metadata, etc.) is attached to each produced dataset;

- •NetCDF-CF Grid files are directly usable by many modelling and visualization tools;
- Access via OPeNDAP protocol is enabled and metadata are described in ISO-19139 format;

•Availability within a free-to-use Virtual Research Environment and via high availability services in D4Science.

D4SCIENCE INFRASTRUCTURE

Conclusions

Our approach is compliant with Open Science advices and allows adding specific terms as variables and global attributes in order to connect Argo data to domain-specific ontologies.

- Metadata in ISO-19139 and NetCDF-CF Grid files allow for
- Easy retrieval of ARGO data;
- Connecting data to other catalogues;
- Using data in other processes, e.g. the SeaDataNet DIVA service, ecological niche models, etc.;
- Visualising data in common tools (e.g. ArcGIS and QGIS).
- Dublication in a free-to-use Virtual Research Environment enables security, access monitoring, and files/information sharing.
- D4Science BiodiversityLab Virtual Research Environment: https://services.d4science.org/group/biodiversitylab/

VRE Data Catalogue

https://services.d4science.org/group/biodiversitylab/data-

VRE Integrated Visualization Tool:

https://services.d4science.org/group/biodiversitylab/geo-

Argo Data Conversion WPS Process:

https://services.d4science.org/group/scalabledatamining/dataminer?OperatorId=org.gcube.dataanalysis.wps.stat ynchserver.mappedclasses.transducerers.ARGO DATA CONV ERSION SUITE