Error characterization of SSS products using Triple Collocation Analysis

Nina Hoareau, Marcos Portabella, Wenming Lin, **Joaquim Ballabrera** & Antonio Turiel. *Hoareau et al., 2018 (TGRS)*

Physical Oceanography Department Institute of Marine Sciences (ICM), CSIC Pg. Marítim de la Barceloneta 37-49, Barcelona E-mail: vgonzalez@icm.csic.es URL: bec.icm.csic.es

Sea Surface Salinity (SSS): Essential Climate Variable

More than 9 years of remote sensing SSS data are available, thanks to satellite passive L-band missions.

CSIC O

Satellite salinity measurements provide unprecedented spatio-temporal resolution/coverage as compared to any other observation system (Argo, CTD, TSG, moored buoys, etc.).

⇒ Need for a comprehensive error characterization of the available SSS products.

In this study, we focus on the validation of **SMOS-BEC** and **Aquarius v.4 Level 3** products.

Limitations of direct comparison validation approach

Spatial and temporal representation when comparing satellite gridded product versus in situ data:

- Vertical representation: first cm / ~5m
- Spatial representation: 0.25⁰/ point measurement
- Temporal representation: ~weekly / instantaneous (Argo)

=> The different spatial & temporal representation of the data will impact the direct comparisons and therefore needs to be accounted for during the validation process => **representativeness error**

In direct comparisons, in situ data are assumed to be true or perfect at satellite scales => only the **relative error** is estimated.

Absolute error estimation requires at least 3 independent measurement systems.

=> Use of Triple collocation Analysis.

IMDIS, 5-7 Nov. 2018, Barcelona

Triple Collocation (Stoffelen, 1998)

- Triple collocation (TC) was conceived as a tool for intercalibration and individual error assessment of three different collocated WIND data sets (Stoffelen, 1998).
- Given 3 measurement systems with different spatial resolution (buoy, satellite, model), s_i, i=1,2,3, the measurement and its error are modelled by the following linear equation:

Triple Collocation (Stoffelen, 1998) Representativeness error

Triple Collocation (Stoffelen, 1998) Representativeness error

Suppose system 1 and 2 resolve **smaller turbulent** scales than system 3.

The true variance common to these smaller scales is:

$$r^2 = \langle \delta_1 \delta_2 \rangle$$

3 independent observation systems resolving

which is part of the measurement errors δ_1 and δ_2 . => r^2 is the **correlated part** of the errors of s_1 and s_2 .

Assuming that, since s_3 does not include these smaller scales, its measurement error δ_3 is independent of δ_1 and δ_2 , and:

$$<\delta_1 \delta_3> = <\delta_2 \delta_3> = 0$$

Representativeness error (r²) corresponds to the **common true variance** of Systems 1 and 2, not resolved by system 3.

Triple Collocation algorithm

Period of study: 2013

- all the SSS data sources are available at this period.
- 2013 is **not influenced by strong events** such as El Niño (2014-2015) or La Niña (2011-2012), which are known to be unresolved by the climatology, thus leading to strong biases in the latter.

Colloca Spatial: The closest grid point to the in-situ location is used. Temporal: Collocation to the central day of Aquarius product.

Total of **1456 collocations** with the six products are obtained over the study period of 2013, in the **Tropical band** => Obtained sextuplets of TAO, SMOS, Aquarius, GLORYS2V3, WOA13, WOA09 collocated data.

Location (red symbols) of the TAO, PIRATA, and RAMA buoys arrays used in this study.

Representativeness error Estimation method

Until now, to estimate r^2 with sea surface wind data the methods have been based on:

- Integrating the difference between the scatterometer wind power density spectra (PDS) and those of the numerical model output (*Vogelzang et al. 2011*)
- Calculating the cumulative variance of scatterometer and model wind components (*Vogelzang et al. 2015*).

Problem: SSS PDS spectral slopes of the different products are sensitive to the presence of noise (based on Hoareau et al., TGRS, 2018).

System 1

System 2

System 3

System 2

System 1

Representativeness error Estimation: method

Alternative approach based on TC intercalibration assumption (Lin et al., 2016):

Assumption that a successful TC provides three data sets well intercalibrated.

- \Rightarrow **TC calibration coefficient** a_{i} , b_{i} , are related to the value of r^2
- ⇒ Setting a wrong r^2 leads to a miscalibrated system 3 with respect to systems 1 and 2.

Therefore, an effective way of estimating r^2 is to repeat the TC analysis for different r^2 values until an optimal intercalibration of the different data sources is achieved.

=> Check the data scatterplots after each intercalibration

System 3

System 2

System 1

Representativeness error estimation

<u>SSS data:</u> System 1 -> TAO System 2 -> GLORYS2V3

System 3 -> SMOS

If wrong r² ⇒ Not well calibrated

If correct r² => Well calibrated

bec.icm.csic.es

bec.icm.csic.es

 \Rightarrow **r**² values help to identifies the systems having the finest and the coarsest effective spatiotemporal resolution: T<G<A<S<13<09

Random Error estimation at satellites resolved scales

BEC Barcelona Expert Center Carlos Comparente Conter Carlos Conter Carlos Comparente Conter Carlos Conter Conter Carlos Conter Co

At system 2 resolution: $\delta_{TAO} = \sqrt{\delta_1 - r^2}$ At system 3 resolution: $\delta_{TAO} = \delta_1$

The TAO error variation gives an indication of the uncertainty of the proposed methodology: about 0.01

Estimated SD error of the different salinity measurements at the satellite scales						
	> ΤΑΟ	GLORYS2V3	AV4	SMOS	WOA13	WOA09
Aquarius scale	0.18±0.01	0.18	0.17±0.01	0.24±0.01	0.29	0.31
SMOS scale	0.22±0.01	0.21	0.21±0.01	0.20±0.01	0.26	0.29

Conclusions

BECONSTRUCTION

The **TC technique** consists of using 3 **independent**, **intercalibrated** and **collocated** data sources to provide an **estimate of their individual random error** (SD).

- The analysis has been carried out at the scales resolved by the two satellite products: SMOS Objective Analysis and Aquarius v4 Level 3.
- The representative error has been accounted for during the TC validation of six different SSS products along the tropical band for the year 2013 => Sextuplets give robust TC analysis results.
- 3) The *r*² estimation method is based on the analysis of the intercalibration results.
- It has been found that the representativeness error (r²) contributes to 15% ~ 50% of the error estimates.
- 5) r² values help sorting the systems in terms of their effective spatiotemporal resolution:

TAO < GLORYS2V3 < Aquarius v.4 < SMOS OA < WOA13 < WOA09

6) The TC method developed here leads to an uncertainty of about 0.01 in the SSS error estimates.

Conclusions

BEC Barcelona Expert Center ICM OFFICIAL ECCO

The validation has been carried out at the satellite-resolved spatiotemporal scales.

It has been found that the **TAO SD error** at the **Aquarius v4** and **SMOS OA** spatiotemporal scales is **0.18** and **0.22**, respectively.

=> The error values include the contribution of the following representativeness errors:

- the horizontal scale difference between the point-wise observation and the 0.25°-1° grid sizes of the satellite products
- the vertical mismatch between TAO measurement at 1-1.5m depth and the satellite at 1 cm depth
- the different temporal resolution of TAO (1 day) and satellite products (7-9 days).

The partition of these error contributions remains a research topic in oceanography.

http://bec.icm.csic.es

de Ciències del Mar

> UNIVERSITAT. BARCELONA

COST CONTROL UNIVERSITATIVE POLITICATION UNIVERSITATIVE AUtónoma Des catalitatives de activitatives de Barcelona

BARCELONA EXPERT CENTER

Barcelona Expert Center Remote Serionio Research, dam dictigation and Visionantion Seriores Reme: Recproducts contact monther

SMAP SSS PROVIDED BY REMSS: V1.0 VS V2.0

Since last September, Remote Sensing Systems (REMSS) is producing version 2.0 of the Level 2 and Level 3 Sea Surface Sarinty products from SMAP One year ago, we published in this flog a brief study on the validation of version 1.0 Me 8-day 1.3 SS maps provided by REMSS (see Prefirminary validation of 8-day SMAP L3 Sality Construct VI n.6-

Private Zone Manage your subscription

Last Month's Most Popular Posts

 SMAP SSS provided by REMSS: v1.0 vs v2.0

Results

Figure 4: (Left) Slope values as a function of representativeness error (r²) for the triplet TAO-AV4-WOA09 (TA09). Blue solid (dashed) line: slope values of the scatterplot TAO/WOA09 (AV4/WOA09). (Right) Scatterplot of AV4 versus WOA09 after TC, using a representativeness error, r², of 0.034.